
L I G H T N I N G S E C U R I T Y

PENETRATION TEST REPORT
EXAMPLE INC

February 1, 2017
lightningsecurity.io
info@lightningsecurity.io

Table of Contents
1Executive Summary

2Findings Overview

3Findings

3SQL Injection on app.example.com

4Privilege Escalation via Insecure Direct Object Reference

5Stored Cross-Site Scripting

6Cross-Site Request Forgery on Posting Comments

1

Executive Summary
Lightning Security conducted a 1 week, 20 hour penetration test of Example Inc., with the goal of
discovering vulnerabilities in the following systems:

Web: *.example.com - Example Inc. Customer-Facing Website

Web: *.example.net - Example Inc. Corporate Website

Mobile: Example Inc. iOS application

Priority was given to app.example.com and the Example Inc. iOS application, which provide an
interface for Example Inc. customers to manage their accounts. As the protection of Personally
Identifiable Information (PII) is a priority for Example Inc., the exposure of information such as social
security numbers, payment information, and other user data was deemed especially critical.

Lightning Security was given access to user accounts with standard permission, in order to simulate a
real attack scenario.

2

Description Severity Page

SQL Injection on app.example.com Critical 3

Privilege Escalation via Insecure Direct Object Reference High 4

Stored Cross-Site Scripting on User Profile High 5

Cross-Site Request Forgery on Posting Comments Medium 6

Findings Overview
Over the course of testing, Lightning Security identified 2 critical severity flaws, 3 high severity flaws, 5
medium severity flaws, and 2 low severity flaws:

The following issues were identified:

3

Findings
SQL Injection on app.example.com

Lightning Security identified a critical SQL injection vulnerability on app.example.com . By making a
request to /order/complete with a malicious payload in the productId parameter, it is possible to
extract data from the production database of Example Inc. As a proof of concept, Lightning Security
was able to extract the hashed password of another account created specifically for testing.

Reproduction Steps

1. Visit the Order Completion page at https://app.example.com/order/complete .
2. Intercept the request in a proxy such as Burp Suite.
3. Modify the productId to the value 1408' AND 'a'='a .
4. Observe that the request succeeds.
5. Modify the productId to the value 1408' AND 'a'='b .
6. Observe that the request fails, as the expression 'a'=b evaluates to false.

Impact

This vulnerability allows an attacker to extract all data in the app.example.com production database.
This includes user information such as social security numbers, hashed passwords, and credit card
numbers.

Suggested Remediation

Escape all special characters in SQL queries.

4

Privilege Escalation via Insecure Direct Object Reference

Lightning Security identified a privilege escalation vulnerability on app.example.com . The
/team/:id/makeAdmin endpoint allows a user to add another user as an administrator of their team.

Passing the id of another team allows an attacker to add themselves as an administrator to the team of
another user.

Reproduction Steps

1. Visit the Team Overview at https://example.com/team/overview .
2. Obtain the team id of another user (These are incremented integers, so an attacker could

enumerate other team ids).
3. Intercept the request to /team/:id/makeAdmin to add an administrator to the current team.
4. Modify the id in the url to the other user's id.
5. Observe that the testing will be added as an administrator of the other user's team.

Impact

This vulnerability allows an attacker to add themselves as an administrator of any user's team,
exposing sensitive information associated with the team and allowing the attacker to make
modifications to the team.

Suggested Remediation

Ensure a user may only invite other users as administrators to teams of which they are an owner.

5

Stored Cross-Site Scripting

Lightning Security identified a stored cross-site scripting vulnerability on app.example.com . By setting
their public biography to a malicious payload, an attacker can execute JavaScript on the browser of
other users. This allows the attacker to steal cookies of other users, compromising their accounts.

Reproduction Steps

1. Visit the Profile page at https://example.com/profile .
2. Update the user biography to
3. Refresh the profile page.
4. An alert will execute, demonstrating the vulnerability.

Impact

By executing arbitrary JavaScript on the browser of other users, an attacker can completely
compromise the accounts of other users.

Suggested Remediation

Escape special characters in user-provided input.

6

Cross-Site Request Forgery on Posting Comments

Lightning Security identified a cross-site request forgery vulnerability on posting comments in team
threads. As a result, this allows an attacker to post comments from the accounts of other users.

Reproduction Steps

1. Visit the Team Overview at https://example.com/team/overview .

2. Intercept the request to post a comment in a proxy such as Burp Suite.

3. Observe that no CSRF validation is present. To confirm, make an HTML form such as the following:

4. Upon visiting this page, a comment will be posted from the logged-in user's account.

Impact

Exploiting this vulnerability, an attacker is able to impersonate other users by posting comments from
their accounts.

Suggested Remediation

Add CSRF validation to all forms to prevent this type of attack. For further reference, see
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet.

<form action="https://example.com/team/comments/new" method="POST">
 <input type="hidden" name="content" value="Demo comment" />
 <input type="submit" value="Submit request" />
</form>
<script>document.forms[0].submit();</script>

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_

	Table of Contents
	Executive Summary <div style="float:right">1</div>
	Findings Overview <div style="float:right">2</div>

	Findings <div style="float:right">3</div>
	SQL Injection on app.example.com <div style="float:right">3</div>
	Privilege Escalation via Insecure Direct Object Reference <div style="float:right">4</div>
	Stored Cross-Site Scripting <div style="float:right">5</div>
	Universal Cross-Site Request Forgery <div style="float:right">6</div>
	Information Disclosure of Registered Users <div style="float:right">7</div>

	Executive Summary
	Findings Overview
	Findings
	SQL Injection on app.example.com
	Reproduction Steps
	Impact
	Suggested Remediation

	Privilege Escalation via Insecure Direct Object Reference
	Reproduction Steps
	Impact
	Suggested Remediation

	Stored Cross-Site Scripting
	Reproduction Steps
	Impact
	Suggested Remediation

	Universal Cross Site Request Forgery
	Suggested Remediation

	Information Disclosure of Registered Users
	Suggested Remediation

